TensorFlow2.0 入门
包含前向传播,手写数字识别,以及遇到的一些错误的解决方法。
前向传播
#conding:utf-8
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
'''
0 全部输出
2 仅输出错误信息
'''
'''
loss = nan 梯度爆炸'''
# x:[60k,28,28]
# y: [60k]
(x,y),(x_test,y_test) = datasets.mnist.load_data()
# 转换为Tensor
x = tf.convert_to_tensor(x,dtype=tf.float32) / 255
y = tf.convert_to_tensor(y,dtype=tf.int32)
x_test = tf.convert_to_tensor(x_test,dtype=tf.float32) / 255
y_test = tf.convert_to_tensor(y_test,dtype=tf.int32)
print(x.shape,y.shape,x.dtype,y.dtype)
print(tf.reduce_min(x),tf.reduce_max(x))
print(tf.reduce_min(y),tf.reduce_max(y))
train_db = tf.data.Dataset.from_tensor_slices((x,y)).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test)).batch(128)
train_iter = iter(train_db) # 生成迭代器
sample = next(train_iter)
print('batch :',sample[0].shape)
# [b,728] => [b,512] => [b,128] => [b,10]
w1 = tf.Variable(tf.random.truncated_normal([784,256],stddev=0.1))
b1 = tf.Variable(tf.zeros([256]))
w2= tf.Variable(tf.random.truncated_normal([256,128],stddev=0.1))
b2 = tf.Variable(tf.zeros([128]))
w3 = tf.Variable(tf.random.truncated_normal([128,10],stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))
lr = 1e-3
# h1 = x@w1 + b1
for epoch in range(10):
for step,(x,y) in enumerate(train_db):
# x:[128,28,28]
# y: [128]
# x: [b,28*28]
# h1 = x@w1 + b1;
# [b.784]@[784,256] + [256] => [b,256] +[256] => b[256] + [256]
x = tf.reshape(x,[-1,28*28])
with tf.GradientTape() as tape:
h1 = x@w1 + tf.broadcast_to(b1,[x.shape[0],256])
h1 = tf.nn.relu(h1)
h2 = h1@w2 + b2
out = h2@w3 + b3
# compute loss
# out[b,10]
# y: [b] => [b,10]
y_onehot = tf.one_hot(y,depth=10)
# mes = mean((y-out)^2)
# [b,10]
loss = tf.square(y_onehot - out)
# mean: scalar
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss,[w1,b1,w2,b2,w3,b3])
w1.assign_sub(lr * grads[0])
b1.assign_sub(lr * grads[1])
w2.assign_sub(lr * grads[2])
b2.assign_sub(lr * grads[3])
w3.assign_sub(lr * grads[4])
b3.assign_sub(lr * grads[5])
'''
w1 = w1 - lr * grads[0]
b1 =b1 - lr * grads[1]
w2 = w2 - lr * grads[2]
b2 = b2 - lr * grads[3]
w3 = w3 - lr * grads[4]
b3 = b3 - lr * grads[5]
'''
if step % 100 == 0:
print(epoch,step,'loss = ',float(loss))
total_correct = 0
total_num = 0
for step,(x,y) in enumerate(test_db):
x = tf.reshape(x,[-1,28*28])
h1 = tf.nn.relu(x@w1+b1)
h2 = tf.nn.relu(h1@w2 + b2)
out = h2@w3 + b3
# int 64
prob = tf.nn.softmax(out,axis=1)
pred = tf.argmax(prob,axis=1)
#print(pred.shape,out.shape,prob.shape)
pred = tf.cast(pred,dtype=tf.int32)
#print(pred.shape,y.shape)
correct = tf.cast(tf.equal(pred,y),dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_correct += int(correct)
total_num += x.shape[0]
acc = total_correct / total_num
print("test acc: ",acc)
mnist数据体验
#conding:utf-8
# 导入TensorFlow和tf.keras
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets
from keras.datasets import boston_housing
# 导入辅助库
import numpy as np
import matplotlib.pyplot as plt
#(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
(train_images, train_labels), (test_images, test_labels) = boston_housing.load_data()
class_names = ['0','1','2','3','4','5','6','7','8','9']
train_images = train_images / 255.0
test_images = test_images / 255.0
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
遇见的问题
导入fashionminst数据问题
报错
EOFError: Compressed file ended before the end-of-stream marker was reached
解决问题方法:
fashion-mnist数据缓存位置 :
C:\Users\(你的Windows用户名)\.keras\datasets\\fashion-mnist
删除fashion-mnist文件夹,然后重新加载数据就可以了。
fashion-minst数据集更换国内可用连接
在你的TensorFlow库文件里面,更改fashion_mnist.py文件,具体路径如下:
envs\\tensorflow\lib\site-packages\tensorflow\python\keras\datasets\fashion_mnist.py
把代码中的
base = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/'
替换为如下连接: base = 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/'
其他数据源也可以通过类似的方法更改,不错连接要准确。
评论
隐私政策
你无需删除空行,直接评论以获取最佳展示效果